The Stribeck curve is a fundamental concept in the field of tribology. It shows that friction in fluid-lubricated contacts is a non-linear function of the contact load, the lubricant viscosity and the lubricant entrainment speed. The discovery and underlying research is usually attributed to Richard StribeckStribeck, R. (1901), Kugellager für beliebige Belastungen (Ball Bearings for any Stress), Zeitschrift des Vereins Deutscher Ingenieure 45.Stribeck, R. (1902), Die wesentlichen Eigenschaften der Gleit- und Rollenlager (Characteristics of Plain and Roller Bearings), Zeit. des VDI 46. and Mayo D. Hersey,Hersey, M. D. (1914), The Laws of Lubrication of Horizontal Journal Bearings, J. Wash. Acad. Sci., 4, 542-552. Biography of Mayo D. Hersey who studied friction in journal bearings for railway wagon applications during the first half of the 20th century; however, other researchers have arrived at similar conclusions before. The mechanisms along the Stribeck curve have been in parts also understood today on the atomistic level.
1. Boundary lubrication 2. Mixed lubrication 3. Hydrodynamic lubrication ]] For a contact of two fluid-lubricated surfaces, the Stribeck curve shows the relationship between the so-called Hersey number, a dimensionless lubrication parameter, and the friction coefficient. The Hersey number is defined as:
where η is the dynamic viscosity of the fluid, N is the entrainment speed of the fluid and P is the normal load per length of the tribological contact.
Hersey's original formula uses the rotational speed (revolutions per unit time) for N and the load per projected area (i.e. the product of a journal bearing's length and diameter) for P.
Alternatively, the Hersey number is the dimensionless number obtained from the velocity (m/s) times the dynamic viscosity (Pa∙s = N∙s/m2), divided by the load per unit length of bearing (N/m).
Thus, for a given viscosity and load, the Stribeck curve shows how friction changes with increasing velocity. Based on the typical progression of the Stribeck curve (see right), three lubrication regimes can be identified.
The graphs plotted by Martens show the coefficient of friction either as a function of pressure, speed or temperature (i.e. viscosity), but not of their combination to the Hersey number. Schmidt attempts to do this using Marten's data. The curves' characteristic minima seem to correspond to very low Hersey numbers in the range 0.00005-0.00015.
In the second approach, the general problem is split up into two sub-problems: 1) lubrication problem assuming smooth surfaces and 2) a “dry” rough contact problem. The two sub-problems are coupled through the load carried by the lubricant and by the “dry” contact. In its simplest approximation, the lubrication sub-problem can be represented via a central film thickness fit to calculate the film thickness and the Greenwood-Williamson model for the “dry” contact sub-problem. This approach can give a reasonable qualitative prediction of the friction evolution; however, it is likely to overestimate friction due to the simplification assumptions used in central film thickness calculations and Greenwood-Williamson model.
An online calculator is available on www.tribonet.org that allows calculating Stribeck curve for line and point contacts. These tools are based on the load-sharing concept.
Also molecular simulation based on classical force fields can be used for predicting the Stribeck curve. Thereby, underlying molecular mechanisms can be elucidated.
|
|